
 Patnode 1

Craft Project Documentation
Meghan Patnode April 30th, 2024

Object-Oriented Programming Concepts ... 2

Encapsulation .. 2

Inheritance (“is a”) .. 3

Polymorphism ... 7

Separation of Concern ... 8

C# Programming Skills ... 11

Collection (e.g., a list, array, dictionary, etc.) ... 11

Enum ... 15

External data (read in) ... 17

Delegate(s) .. 19

Interface(s) .. 21

One of these: LINQ or XML .. 22

Required Functionality .. 22

Supplier ... 22

Customer .. 24

Profit Margin ... 25

Probability ... 27

Generalized Craft Algorithm .. 28

UML Diagrams ... 31

UML Diagram Explanation ... 31

Playtesting .. 32

Test Session (April 22nd) ... 32

Most Successful Project Aspects .. 32

Biggest Project Issues .. 33

How did you use what you learned to improve your application? .. 33

Credits .. 33

Research ... 34

Instructor Provided Research... 35

 Patnode 2

Object-Oriented Programming Concepts

Encapsulation

Definition:

Encapsulation is the practice of containing data in one class, in order to prevent other
classes from changing that data and to provide a level of abstraction that helps when/if
fields are changed later in a project. This is done by creating a private field that stores
the actual information being protected and a public property that uses getters and
setters to access the information in the private field. It is best practice to keep fields
private when possible, so that private information is protected, and values are not
unintentionally changed.

Brief code excerpt(s) from your project:

^ Person class. Encapsulation Image 1.

 Patnode 3

^ Item class. Encapsulation Image 2.

Explain usage in your project:

In Image 1, Encapsulation is used to hide information from other classes so that the
 player’s name remains only accessible through the public version with getters and
 setters. I found the player’s/person’s name to be best suited for this because it is only
 changed once by the start-up window (therefore, this makes it harder to accidentally
 change) and all other usages are read-only. Also, the person name is sensitive
 information given by the player.

In Image 2, getters and setters are used for item description because the set allows
 access to all of the fields in item needed for listing the ItemDescription, in a read-only
 format. This makes the information pulled to create the ItemDescription (when writing
 the description) impossible to change from the class accessing it. Additionally, it
 simplifies the code so that item description is only written once.

Inheritance (“is a”)

Definition:

 Patnode 4

Inheritance is used when a class “is” also another class. This is shown in a parent/child
relationship. A child class inherits all of the aspects from a parent class, and all of its own
new ones. This is good for when something is a more specific version of a blueprint. For
example, a class for “Moby Dick” would be a child and a “book” class would be a parent.

Brief code excerpt(s) from your project:

1^ Person class that the Customer and Vendor classes both inherit from. Inheritance Image 1

1

 Patnode 5

^ Top half of vendor class. Inheritance Image 2.

 Patnode 6

^ Second half of vendor class. Inheritance Image 3.

^ Customer class, child of person class. Inheritance Image 4.

 Patnode 7

Explain usage in your project:

In Image 1, the parent class, Person is shown. Image 2-4 show the two classes that
inherit from the Person class, Vendor and Customer. This made sense because both of
these child classes needed the contents of the parent class, such as the name setup, but
also needed unique functionality. For example, the vendor child class also contains the
functionality for restocking the vendor’s inventory, something neither the player or the
customer would need (which are the other two instances in which the person class is
used). This is especially useful with the customer class, because a new customer is
generated each time the player needs to sell items. Therefore, if the customer class did
not exist, things like the CustomerIntroductionText would need to exist in the Person
class (not useful to other persons) and the variables like the customer’s currency (which
is set to be a number the player cannot possibly max out in sales, a unique need for the
customer) would need to be set each time this customer is generated. Ultimately, the
use of inheritance simplifies the code, allowing for more reusability.

Polymorphism
Definition:

Polymorphism goes hand in hand with Inheritance. Something is polymorphic when it is

inherited from a parent class, but utilizes an override method. A base or parent class can

have a method with a virtual keyword, and a child class can have that same method

with the override keyword. If the child is called, the override method will be used

instead of the virtual one at runtime. This allows for classes to break uniformity in order

to have specifics related to themselves, but still reuse what is needed from the parent

class.

Brief code excerpt(s) from your project:

^ Virtual class inside person. Polymorphism Image 1.

 Patnode 8

^ Customer class override. Polymorphism Image 2.

^ Vendor class override. Polymorphism Image 3.

Explain usage in your project:

In Image 1, the virtual method inside the Person class is used to set the name of the
Person to one of the default names provided from a list, this is used for almost all
persons. However, the usage of the override inside the Vendor and Customer class
allows the prefix of either Shopkeep or Customer to be added. Then, the normal method
is from the person class is run. This way, the Vendor and Customer class can reuse the
code needed from the person class (pulling and setting a random name) but still include
the functionality specific to the child class, without creating an entirely new function.

Separation of Concern

Definition:

Separation of Concern (SoC) is a design principle in which importance is placed on
separating each part of the code (In C# typically classes) into distinct pieces that each
individually address one singular concern of the software. Breaking code into parts like
this allows for easier time in development and leads to more reusable code.
Additionally, it makes it easier to troubleshoot issues within the code (i.e. if you are
experiencing an issue, there’s only one location that is able to cause said issue).

 Patnode 9

Brief code excerpt(s) from your project:

^ Trade menu in final product, increment/decrement buttons explained below shown on
right side. SoC Image 1

 Patnode 10

^ ChangeBuyCount contained in the Item script. SoC Image 2.

 Patnode 11

^ ChangeBuyCount called in Item class, which is binded to the buttons in the XAML. SoC Image
3.

Explain usage in your project:

The functionality of the increase and decrease buttons on the Trade.XAML page is
separated from the XAML.cs file so that the functionality for
incrementing/decrementing the buying count of the item is contained entirely inside the
item itself. This way, the actual XAML file for the Trade page is only concerned with the
visuals of the software, whereas the item class is focused on the item’s functionality and
logic.

C# Programming Skills

Collection (e.g., a list, array, dictionary, etc.)

Brief code excerpt(s) from your project:

 Patnode 12

^ Vendor, Player, and ActiveItems Lists. Collection Image 1.

 Patnode 13

^ Collection usage in CheckAbilityToBuyItems Method (First Half). Collection Image 2.

 Patnode 14

^ Collection usage in CheckAbilityToBuyItems Method (Second Half). Collection Image 3.

Explain usage in your project:

One example of collections in my project is how Lists are used throughout to keep track
of the Vendor and Player’s inventory, helping facilitate the distribution of items. In
Image 1, three lists are instantiated with the correct items corresponding. The first two
are for the Vendor and Player. The third list is to keep track of all possible items the
vendor would need to sell at some point in order for the player to continue creating
recipes. When the Vendor restocks, it goes through this list to check if it has enough
stock of each item inside of it, and if it doesn’t, it creates a clone for its own inventory.

 Patnode 15

Image 2 and Image 3 are examples of how these lists are used to transfer items from the
vendor’s inventory into the player’s. By using a collection for this, all items with their
own individual data can be maintained and sorted, depending on whose inventory they
belong to.

Enum

Brief code excerpt(s) from your project:

^ Enum used in project. Enum Image 1.

 Patnode 16

^CheckAbilityToCraft method’s usage of enum (First Half). Enum Image 2.

 Patnode 17

^ CheckAbilityToCraft method’s usage of enum (Second Half). Enum Image 3.

Explain usage in your project:

The enum is used to change the value of craftResult depending on whether or not
crafting was successful. This allows the switch later used in the script (Image 3), to
reference this variable and switch cases accordingly. This makes it easier to check the
success because the value of craftResults is always going to be 1 of 3 options.

External data (read in)

Brief code excerpt(s) from your project:

 Patnode 18

^ The DefaultNamesList.txt file being saved in a variable, then loaded in inside LoadNameData().
External Data Image 1.

^ Method that sets a default name for a person getting a random name from read in list.
External Data Image 2.

 Patnode 19

^ Text file read in to project. Image External Data 3.

Explain usage in your project:

External Data is read in for my project during set up for the list of default names (used
for Customers and the Vendor). This usage makes sense because the list of default
names is over 100 names long. The reason for this length is because a name is removed
from this list once it is assigned so that each default person has a unique name. So, an
exorbitant amount of names prevents the player from ever actually depleting the list.
Therefore, it makes more sense for this string to be loaded in from a separate text file,
rather than cluttering up the code with an extremely long list of strings.

Delegate(s)

Brief code excerpt(s) from your project:

 Patnode 20

^ ChangeBuyCount class using a delegate with SiblingChanged to check if the sibling (decrement
button if the clicked increase button sets the buying count to <= 1) needs to be updated.

Delegate Image 1.

 Patnode 21

^ Item class calling delegate function to update increment and decrement buttons.

Explain usage in your project:

Delegates let you pass and store functions like they are a variable. Increment needed to
be able to store decrement’s update UI function, so it would be able to call it at the
same time it own UI was updated (and vice versa).

Interface(s)

Brief code excerpt(s) from your project:

^ Class which implements ICommand interface. Interface Image 1.

Explain usage in your project:

The interface I used in my project is the ICommand, which is a built in interface in WPF.
This is helpful for the increment and decrement buttons because of the usage of the
CanExecute function and CanExecuteChanged. This way, the buttons can be updated

 Patnode 22

accordingly (for example, if the buying count gets to the exact amount the vendor has in
stock, the increment button should be disabled). By implementing an interface for these
buttons, as opposed to using button click, the buttons use more complex logic, through
the required parameters.

One of these: LINQ or XML

Brief code excerpt(s) from your project:

^ LINQ Image 1.

Explain usage in your project:

The UpdateTradeList function is using a query expression to then cycle through the data
 in the vendor’s inventory. This is done whenever a change is made to adjust the view
 accordingly.

Required Functionality

Supplier

Brief code excerpt(s) from your project:

 Patnode 23

^ Vendor Class (First Half). Supplier Image 1.

 Patnode 24

^ Vendor Class (Second Half). Supplier Image 2.

Explain usage in your project:

The vendor class is used to handle the supplier and is a child of person. The vendor
introduction generates a string to talk to the player, asking them if they would like to
buy ingredients. This function is called in the XAML that creates the display for the Buy
Window. This class also contains the code to restock the vendor’s inventory, which is to
be called periodically when the player buys enough items. This character’s inventory
facilitates the items that the player can buy, including those items’ prices.

Customer

Brief code excerpt(s) from your project:

 Patnode 25

^ Customer class, child of Person. Customer Image 1.

Explain usage in your project:

This class is a child of person and is used to generate a new customer each time the
player opens the Sell Window. By creating this class it automatically sets the funds of
the customer, allows an override function for the naming of the customer, and handles
the randomly generated introduction of the customer, which is printed to the XAML.

Profit Margin

Brief code excerpt(s) from your project:

 Patnode 26

^ Recipe for Powdered Sugar Icing showing ingredient values and resulting item value. Profit
Margin Image 1.

^ The function on the item class that adds the chance of Rare or Uncommon Quality. Profit
Margin 2.

Explain usage in your project:

 Patnode 27

Each recipe’s finished product is worth more than the combined value of all the
ingredients. Additionally, when an item is crafted it has a chance to be Uncommon or
Rare, further increasing the sell value of the item.

Probability

Brief code excerpt(s) from your project:

^ Code that runs the function to randomly (10% chance of Rare, 20% chance of Uncommon, 70%
chance of regular item) add a multiplier to the item’s quality. Then, checks to see if the player

has one of exact quality or whether a new item needs to be added. Probability Image 1.

^ Method inside Item class that is used to add a random quality multiplier and name change to
the item, called after it has been crafted.

Explain usage in your project:

 Patnode 28

When the player crafts an item the method QualityMultiplierCalculator() pictured in
image 2 is used to get a quality multiplier for the item. The craftingProbabilityList
contains doubles 1(x7), 1.4(x2), and 1.7. Therefore, when random is called on this list
there is a 70% chance that the item will be regular quality, a 20% chance that the item
will be of Uncommon quality, and a 10% chance that the item will be rare. Then the
item’s value will be multiplied by the double pulled randomly from the list. This function
is called right after the item is crafted in Image 1.

Generalized Craft Algorithm

Brief code excerpt(s) from your project:

^ algorithm passes in whatever the player selected in the window on the Craft Page, then goes
through each ingredient to check if the player has the correct quantity in their inventory, if they

do the craftResult is enum is set to craftSuccess. If they don’t the enum is set to craftFailure.
Generalized Craft Algorithm Image 1.

 Patnode 29

^ Continuation of craft algorithm. Based off the setting of the enum, the switch case either
results in a failure to craft the item or adds the item to the player’s inventory. Generalized

Crafting Algorithm Image 2.

 Patnode 30

^ This continuation of the crafting algorithm calls the multiplier function on the item to set a
quality and corresponding value for it. Then, checks to see if it should combine the item count

with a preexisting item in the player’s inventory or if it should add a new clone item to the
player’s inventory. Generalized Crafting Algorithm Image 3.

Explain usage in your project:

This method passes in whatever recipe the player has selected from the menu,
therefore the variable can be used to abstractly craft. Every recipe will have ingredients
on it and a finished item corresponding to the recipe (to clone and add to the player’s
inventory). Therefore, by calling the variables on the items, instead of specific values,
this code can be reused for every single recipe. This is the only code used to craft items.

 Patnode 31

UML Diagrams

UML Diagram Explanation
The relationship of inheritance used in this project is the parent Person class to the children Vendor and

Customer classes. By doing this, the code for the person can be reused for all three, because all three require

these more generalized components. Also, the Vendor and Customer can override virtual methods inside the

Person class in order to add whatever corresponding unique components they need. In this case, the virtual

method used is the SetDefaultName() method, which for customers is overridden to Customer plus their

name (from the base function) and for the Vendor is overridden to Vendor plus their name (from the base

function).

All of the code inside my XAML is used to handle what pages and buttons are visible, and what text is

printed to the screen. This way, all of the code in these pages address only one concern, the visuals printed to

the screen for the player. The Game class handles the functionality and logic of the game. The XAML calls

methods within the game class, which change data based on the players selection in the window. Then, send

that data back, for example, returning a string, for the XAML CS to print to the screen. Other classes like Item

and Person, each have their own separate methods that game calls upon accordingly or store data for

algorithms like the Buy and Craft functionality in game (Person sets up the variables each person contains,

Item handles the functionality of the incrementation/decrementation of what the item the player is buying).

 Patnode 32

Playtesting
The most successful portion of my project that was revealed during playtesting was the

organization of the user interface. Players found the interface to be easily intuitive. Specifically, the

broad range of different WPF tools to organize information; such as the TreeView used in the Craft

Menu to allow the player to expand the ingredients of each recipe when desired. Although it is

important to acknowledge, that this could be biased due to the fact that play testers not only were

familiar with the project, but have created versions themselves – therefore, it is unsurprising that

these playtesters would know exactly what their intended goal was upon start. So, despite positive

feedback a detailed instructions, menu was added after playtesting.

While play testers didn’t comment on this in their feedback, one issue I observed was that

sometimes the player would get stuck in a situation without any funds to continue. They would not

have enough money to buy new ingredients and would not have enough ingredients to craft

something to sell. As a result of this behavior, I added a Tips button despite it not being in the

functionality requirements. This allowed the player to hit the button to increase their money, like a

clicker game. However, because this button was not the intended way for players to earn money the

button only increases the player’s funds by 0.01$, to encourage players to use it only when they are

completely cornered.

Another issue that was found was that because my code was set to remove items that had

been structured to check if an item had a quantity greater than or equal to 1, or if the quantity was

less than 0, and then remove the item accordingly. This was done so that items that had reached a

quantity of 0 would be automatically removed from the player’s inventory instead of creating clutter.

This code had an issue in that it did not account for half cups. Items that had a decimal in their

quantity would allow the player to just continue using it. If the vendor had been bought out of

something on a decimal, the player could continue buying into the negatives. This was fixed by

simply adding another if else statement that would take into account if the item was less than 1 but

more than 0.

Test Session (April 22nd)
1) Christopher Leon

2) Leo Richnofsky

Most Successful Project Aspects

• Aesthetics – Players enjoyed the colors that differentiated the sections, and the stylization of

information.

• Organization – Players enjoyed the organization of information, for example, that things like the

recipes were formatted in a drop down menu so that they could be expanded and collapsed.

• Ease of repeated action – I found the inclusion of extra buttons (for example, arrows allowing the

player to increment what they wanted to buy instead of clicking confirm multiple times) to be

successful in contributing to ease of use.

 Patnode 33

Biggest Project Issues

• My project needs to be further completed. At the time of playtesting, the buy and sell window was

not completely functional.

• My buy and sell options may need to be separate windows in order for their functionality to be

clearer. As of now, it is not intuitive that you can interact with the player inventory on the sidebar

and then hit sell on the main window.

• My project needs an instruction window. I think because the players had the context of the

assignment uses the application was easier, but I do not think that a player completely new to the

functionality would have the same success.

How did you use what you learned to improve your application?
After playtesting I separated my buy and sell windows, making the Customer and Vendor two

separate entities. This made the software easier to understand as it was difficult for players to understand

that the inventory menu (which was nothing more than display in other windows) would need to be selected

in order to sell an item. Separating these also allowed me to make the program more engaging by giving the

Vendor and Customer separate dialogue and names. Making this change also made my code easier to

organize, because the code for the trade window was no longer trying to both use the code for selling and

use the code for buying.

Another bug ran into during playtesting was the fact that changes made to items bought from the

vendor would affect the same type of item in the vendor's inventory. For example, if the player bought an

item from the vendor, the amount they had would change the vendor’s stock quantity (they buy 6, so the

player’s inventory count changes to 6, but also changes the vendors inventory count to 6), and if they sold

the item to a customer, it would deplete the vendor’s stock as well. This issue spawned from my own lack of

understanding how adding an object (or anything for that matter, but it’s much less catastrophic with

something like a string) to a collection would add the exact same reference, rather than creating a duplicate.

This was fixed by creating a member wise clone of the item and adding that clone to the player’s inventory.

My learning of what a member wise clone is, is further elaborated on in the Research section.

Credits

The base structure of the file was used from Janell Baxter’s Programming 2 ProgrammingIICraftDemoPages.

Otherwise, all code used in the project was my own. However, many sources were referenced when creating

said code. These sources include:

Bill Wagner. n.d. “C# Docs - Get Started, Tutorials, Reference.” Learn.microsoft.com.

https://learn.microsoft.com/en-us/dotnet/csharp/.

Adegeo. 2022. “Getting Started - WPF .NET Framework.” Learn.microsoft.com. March 5, 2022.

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/getting-

started/?view=netframeworkdesktop-4.8.

Adegeo. 2023. “XAML Overview - WPF .NET.” Learn.microsoft.com. June 2, 2023.

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-8.0.

https://learn.microsoft.com/en-us/dotnet/csharp/
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/getting-started/?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/getting-started/?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-8.0

 Patnode 34

 w3schools. 2022. “C# Tutorial (c Sharp).” Www.w3schools.com. 2022.

https://www.w3schools.com/cs/index.php.

“Shallow Copy and Deep Copy in C#.” 2019. GeeksforGeeks. January 19, 2019.

https://www.geeksforgeeks.org/shallow-copy-and-deep-copy-in-c-sharp/.

“Deep and Shallow Copy in C#.” n.d. Www.partech.nl. Accessed May 6, 2024.

https://www.partech.nl/en/publications/2021/11/deep-and-shallow-copy-in-c-sharp.

Specific pages of these sources are further elaborated on/included in the research portion below.

Research
When playtesting my project one bug noticed was that if the player had bought an item

from the vendor, further action on that item would effect the remainder of the vendor’s

stock/inventory. For example, if the Player bought X item from the Vendor, then used that item to

craft something else and depleting their inventory of said item, upon opening the Buy Window, the

Vendor would be out of stock of that item. Another case of this was shown when the player bought

an item from the Vendor, the Vendor’s stock would immediately decrease incorrectly (The Vendor

would have a 10 count of an item, the player would buy 4, and because the player’s item count

would be 4, the Vendor’s stock would be 4 instead of 6). The reason for this was because I was using

add on the finished item (CraftedRecipe variable), which was adding the exact same reference of the

item in the vendor’s inventory to the player’s inventory. What I needed to be using was a

memberwise clone of the item. When learning this I referenced this Microsoft Learn page:

dotnet-bot. n.d. “Object.MemberwiseClone Method (System).” Learn.microsoft.com. Accessed May 6, 2024.

https://learn.microsoft.com/en-us/dotnet/api/system.object.memberwiseclone?view=net-8.0.

The memberwise clone creates a shallow copy of the CraftedRecipe variable associated with the

Item in the vendor’s inventory. This clone contains the ItemValue that is multiplied by the rarity

multiplier in the Item Class, which uses probability to add a quality level to each item crafted. The

article “Shallow Copy and Deep Copy in C#” cited in the Credits section is where I learned the

difference between a shallow copy and a deep copy.

A shallow copy is used for creating a new object with the value types of a preexisting object into the

new object. However, for reference types the memory will still be pointed to the same location.

Therefore, if changes are made to one reference type it will affect the other. For this use, a shallow

copy worked. Conversely, a deep copy does not share any objects with the original it's copied from.

Another topic I researched throughout creating this project was different WPF tools. For the

Craft Page I used a TreeView to display the recipes. This way the ingredients could be organized

neatly. As this was my first time using WPF this led to further research on how to use this tool.

Adegeo. 2023. “TreeView Overview - WPF .NET Framework.” Learn.microsoft.com. February 6, 2023.

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/controls/treeview-

overview?view=netframeworkdesktop-4.8.

https://www.w3schools.com/cs/index.php
https://www.geeksforgeeks.org/shallow-copy-and-deep-copy-in-c-sharp/
https://www.partech.nl/en/publications/2021/11/deep-and-shallow-copy-in-c-sharp
https://learn.microsoft.com/en-us/dotnet/api/system.object.memberwiseclone?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/controls/treeview-overview?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/controls/treeview-overview?view=netframeworkdesktop-4.8

 Patnode 35

This led me into looking into data binding because this made sense for formatting the information. This way,

instead of repeating code, the text in the TreeView could directly bind to the corresponding Recipe

object’s values (RecipeRequirements).

Adegeo. 2023. “Data Binding Overview - WPF .NET.” Learn.microsoft.com. September 2, 2023.

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/data/?view=netdesktop-8.0.

I also did further research into the ICommand interface that goes with XAML. Originally, I was using the

Button_Click feature of WPF, but I found this wasn’t complex enough for what I was trying to do. By

attaching the ICommand interface, I used the EventHandler CanExecuteChanged, CanExecute, and

Execute. This made sense for the increment and decrement buttons because at certain points they

would no longer be able to execute. For example, if the player sets the buying count equal to the

stock of the Vendor, the increment button should disable. The following webpages were referenced:

Dotnet-bot. n.d. “ICommand Interface (System.Windows.Input).” Learn.microsoft.com. Accessed May 6,

2024. https://learn.microsoft.com/en-us/dotnet/api/system.windows.input.icommand?view=net-

8.0.

Palkar, Rikam. n.d. “ICommand Interface in MVVM.” Www.c-Sharpcorner.com. Accessed May 6, 2024.

https://www.c-sharpcorner.com/article/icommand-interface-in-mvvm/.

Instructor Provided Research
KptnCook.com. "3 Ingredient Chocolate Cake Gluten Free and Dairy Free." KptnCook.

https://blog.kptncook.com/2015/11/05/3-ingredient-chocolate-cake (accessed February 3, 2022).

Tablespoon.com. "Powdered Sugar Icing." tbsp. https://www.tablespoon.com/recipes/powdered-sugar-

icing/7b63e81d-a088-473a-8bca-74bb1641fc8d (accessed February 3, 2022).

WebMD.com. "Health Benefits of Cacao Powder." WebMD. https://www.webmd.com/diet/health-benefits-

cacao-powder (accessed February 3, 2022).

WebMD.com. "Health Benefits of Eggs." WebMD. https://www.webmd.com/diet/ss/slideshow-eggs-health-

benefits (accessed February 3, 2022).

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/data/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.input.icommand?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.input.icommand?view=net-8.0
https://www.c-sharpcorner.com/article/icommand-interface-in-mvvm/

	Object-Oriented Programming Concepts
	Encapsulation
	Inheritance (“is a”)
	Polymorphism
	Separation of Concern

	C# Programming Skills
	Collection (e.g., a list, array, dictionary, etc.)
	Enum
	External data (read in)
	Delegate(s)
	Interface(s)
	One of these: LINQ or XML

	Required Functionality
	Supplier
	Customer
	Profit Margin
	Probability
	Generalized Craft Algorithm

	UML Diagrams
	UML Diagram Explanation

	Playtesting
	Test Session (April 22nd)
	Most Successful Project Aspects
	Biggest Project Issues
	How did you use what you learned to improve your application?

	Credits
	Research
	Instructor Provided Research

